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the longitudinal coordinate ;  
the angle between s t r e a m  axis  and hor izonta l ;  
the densi ty;  
the v i scos i ty ;  
the shea r  modulus;  
the re laxa t ion  t ime;  
the su r face  tension of liquid; 
the s t r e a m  radius ;  
the s t r e a m  a rea ;  
the p e r i m e t e r  of s t r e a m  c r o s s  sect ion;  
the liquid veloci ty  in s t r e a m ;  

a re  the vo lume t r i c  and m a s s  flow r a t e s ;  
is the longitudinal tension in s t r e a m ;  
is the solution concentrat ion;  
is the shear  ra te ;  
is the degree  of elongation of e l emen t  of liquid; 
is the acce l e ra t ion  of gravi ty .  
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THEORY 

I. 

OF EQUATION OF STATE FOR REAL GASES 

V. A .  B u b n o v  UDC 536.711 

An equation of s ta te  for  r ea l  gases  is der ived  by using co r re l a t ion  re la t ions  between the compo-  
nents of the t h e r m a l  veloci ty.  

w C o r r e l a t i o n  o f  V e l o c i t i e s  a n d  M u l t i p l e  C o l l i s i o n s  

i n  P h a s e  S p a c e  

The pr inc ip les  of mechanics  we re  extens ively  used for  mo lecu l a r -k ine t i c  in te rpre ta t ion  of the p r o p e r t i e s  
of gases  in the works  of P r o f e s s o r  Clausius at  Bonn. He succeeded in set t ing up the famous  equation known as 
the v i r i a l  equation. In modern  mo lecu l a r  phys i c s ,  it is wr i t t en  in the f o r m  

2 ! Z 0r = - -  r j  (1) pv T Ii f ~ Oq 

We reca l l  that  the prcduct  pv is in t e rp re ted  h e r e  as the v i r i a l  of the ex te rna l  f o r ce s  acting on a gas enclosed  
in a given volume.  The quantity K e x p r e s s e s  the kinet ic  ene rgy  resu l t ing  f r o m  motion of the pa r t i c l e s  in the 
gaseous sys tem.  The second t e r m  on the r ight  side of Eq. (1) e x p r e s s e s  the v i r i a l  for  the in ternal  fo rces .  

Two phase spaces  a re  introduced for  the der iva t ion  of an equation of s tate  f r o m  Eq. (1). The f i r s t  is a 
ve loci ty  phase  space ,  the coordinates  of which a re  the three  components  $, ~, and s of the t he rma l  veloci ty  v e c -  
tor .  The quanti t ies  (a~/Sr)nx,  (84~/Sr)ny, and (~ /Or)nz  a r e  taken as the coordinates  of the second phase  space.  
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The distribution of points in the first phase space usually obeys the Maxwell law, i.e., the Laplace- 
Gauss law generalized to the three-dimensional case under the condition there are no correlation relations 
between the statistical quantities ~, q, and ~. The second phase space involves quantities characterizing the 
positions of the molecules and a binary distribution function which is determined from the law of large numbers 
is introduced as its characteristic. For the derivation of the equation of state, it is now merely a matter of 
performing mathematical calculations depending on some interaction law. These calculations entail great 
mathematical difficulty associated with the calculation of the virial coefficients, but from the viewpoint of 
comparison between theory and experiment, the results obtained in this way cannot be considered satisfactory 
(for example, see [1l). 

The statistics of latent elementary phenomena can be constructed in various ways. For example, why is 
it customary to assume the absence of correlations between the statistical quantities ~, q, and ~ in velocity 
phase space? This is a more or less probable hypothesis. On the other hand, nonholonomic constraints may 
operate within the statistical system which do not permit an arbitrary change in the velocities of atoms or 
molecules. These nonholonomic constraints are equivalent to the presence of so-called gyroscopic forces in 
a system which may produce correlation between the components of molecular thermal velocity [2]. 

We previously established a distribution function for the thermal velocities of atoms or molecules where 
the velocity phase space lacks spherical symmetry [3]. It has the form 

[ l ( R n  ~ 2 R ~ ,  z R ~ . ~  2 
r=Aexp o-T+ 

4 2Rl, ~ + _ _  - - + _ _  
R o,a~ R o,o~ R az% 

We assume the standard deviations, al, a2, and ~3 expressed through a certain quantity a, the significance 
of which wiU be shown later, in the following manner: 

V- - 
o , :  o =l o, o. 

We now write the expression for the distribution function in the form 

[ |oI~2 ~2 2R,2 2RI~ 2R~ ) ]  

We c o n s i d e r  i s o t r o p i c  c o r r e l a t i o n .  Then  the m i n o r s  of the c o r r e l a t i o n  d e t e r m i n a n t  have  the f o r m  

R11 = R ,  = R= = I - -  rS; Ri~ = Ris = R• = - -  r (I - -  r). 

Us ing  t h i s ,  we  r e w r i t e  Eq.(2) in the f o r m  

f = A e x p  - - ~ 1 ~  2 + n  2 +  - - 2 n ( ~ n + n ~ + ~ ) l  , (3) 

w h e r e  n is  def ined  in the fo l lowing m a n n e r ,  
/ -  

, .  , 

n = 1 + r (4) 

I t  is  e a s y  to b r i ng  the  q u a d r a t i c  f o r m  (3) to a canon ica l  f o r m  [4]. Then  

, : Aexp [ - - 2 - ~  (s,~ + s~l' + s3~) ] ,  (5) 

w h e r e  s 1 = 1  - 2n, s2 = l + n ,  s 3 = l + n .  I t  i s  e a s y  to s ee  t h a t s l  = s 2  = s 3  = l f f r = 0 a n d t h e d i s t r i b u t i o n f u n c -  
t ion  (5) is  c o n v e r t e d  into a Maxwel l i an  d i s t r i bu t i on  with the l a t t e r  be ing  a s p e c i a l  ca se .  

The  cons t an t  A tn Eq. (5) is d e t e r m i n e d  f r o m  the n o r m a l i z a t i o n  condi t ion and fo r  ca lcu la t ion  of the m e a n  
s q u a r e  t h e r m a l  ve loc i t y  ('6 2 = ~-2 + ~ + ~ ) ,  it is  n e c e s s a r y  to t r a n s f o r m  to s p h e r i c a l  coo rd ina t e s ;  a f t e r  p e r -  
f o r m i n g  w e l l - k n o w n  ca l cu l a t i ons  we obta in  

C~ = 3 ( I - - n ) a  ~ = 3~(n)o~. (6) 
(1 + n)(l - - 2 a )  
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For  our case,  the mean kinetic energy of t ranslat ional  molecular  motion is 

1 ~ rniv~ Nm-~2 3 NmcsZ~F(n) �9 
K = T  , = - 2  = T  

The quantity e can be re la ted to the t empera tu re  through the Boltzmann postulate 

Equation (1) now takes the form 

Nm~ ~ ~ RT. 

1 Z ri Or pv = 1F (n) RT ----~ ~ Ort 

In the above equation, we separate  out the compress ib i l i ty  factor  

pv = ~(n) T). RT + F (p, (7) 

The function F(p, T) takes into account the contribution to the compress ib i l i ty  factor  f rom the v i r ia l  for  the 
in termolecular  forces .  We f i r s t  consider  a state of the compressed  gases such that the function FO, T) can 
be assumed  small .  In that case ,  we rewri te  the equation of state in the fo rm 

, ~ =V(n). (s) 
RT 

To make our derivat ion m o r e  convincing, we c a r r y  out the following check. For  modera te ly  high p r e s s u r e s ,  
Hirshfelder  r ecommends  the following equation of state:  

pv = I + B (T) 

RT v 

' 

Here B(T) is the second virial coefficient, and a and b are the usual Van der Waals constants. This equation 
was obtained under the assumption the internal energy of the gas depended linearly on density and the mole- 
cules resembled hard, noninteracting spheres at sufficiently high temperatures. This equation has many good 
features. Thus, by means of it, the change in the Joule-Thomson coefficient with pressure is described rather 
well. 

In the Hirshfelder  equation, we replace  the ra t io  b/v by a quantity proport ional  to n; i .e . ,  we se t  b/v = 
o~, and we r ep resen t  the ra t io  B(T)/v in the following manner :  

B ( T__._.~) = __A b = A a.n . 
v v 

The Hirshfelder equation then takes the form 

I~ = I -+- Ac~n --}- 0.625~2n 2 + 0.2869cr 3 + 0.1928~4n 4. 
RT 

Now the right side of this equation is some function of the correlation coefficient which we denote by x(n). The 
two functions ~(n) and x(n) can be superimposed on one another. In order to carry out this operation, it is 
necessary to calculate the constants A and c~ of the function • from two points of the function ~(n). They 
turned out to be cz =2.76 and A =-0 .264 .  After  this ,  the two functions were  super imposed (Table 1). As  is 
c lear  f rom the table,  both functions are  in reasonably good approximation. 

Since tr iple and quadruple molecular  coll isions were  considered in the derivation of the Hirshfelder  equa-  
tion, the matching of the functions • and @(n) leads one to think the introduction of corre la t ion distribution 
functions is equivalent to these coll isions.  This is also understandable logically. Correla t ion is introduced in 
s tat is t ical  entities when their  change is constrained by any conditions. The tendency toward separate  calcula-  
tion of t r iple ,  quadruple,  etc. collisions of molecules  is essent ia l ly  equivalent to the imposition of certain con- 
ditions on change in thermal  veloci t ies .  The ve ry  fact  that these collisions are  selected implicit ly assumes  
some constra int  on f ree  motion of the molecules .  It  is therefore  not surpr i s ing  that both functions ~(n) and 
x(n) a re  reasonably good approximations of one another.  
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TABLE 1. Compar i son  of the Functions x(n) and ~(n) 

n X (nl ~ ( n )  n X (n) ~ ( n }  

0,15 
0,20 
0.25 

1,0239 
1,1109 
1,2533 

1,0559 
1,1111 
1,2000 

0,30 
0,35 
0,40 

1,4634 
1,7548 
2,1429 

1,3461 
1,6050 
2,1428 

w K i n e m a t i c s  o f  S t a t i s t i c a l  M o t i o n s  

The French  g e o m e t e r  Char l e s  expounded the geome t r i c  p r inc ip les  of duality in detai l  in [5]. In his opin-  
ion,  only cus tom with r e s p e c t  to the v iews of the ancients  and the s u c c e s s e s  of Varignon and Newton, who r e -  
p l a c e d  motion by f o r c e s ,  c rea ted  a ra t ional  mechan ic s  and thereby  re in fo rced  the conviction that  the theory  of 
mechan ica l  mot ions  m u s t  r e s t  on the p r i m a r y  concept  of the point as an e l emen t  of space.  At the s ame  t ime ,  
this  can lead to a one - s ided  mani fes ta t ion  of na tura l  phenomena.  They made force  force  the dominant  and p r i -  
m a r y  concept  in mechan ic s  and the concept  of a pa i r  a de r iva t ive  concept  not equivalent  to the concept  of a 
fo rce .  

However  f r o m  an ana lys i s  of the c h a r a c t e r i s t i c s  of the mot ion of a f r ee  r ig id  body,  i t  is  easy  to conf i rm 
that  ro ta t ional  and t rans la t iona l  mot ions  en te r  in comple te ly  equivalent  fashion in the overa l l  motion of the 
body. T h e r e f o r e ,  i t  was  not difficult  for  Char l e s  to show how it  was n e c e s s a r y  to cons t ruc t  a mechan ica l  s y s -  
t e m  in which another  pr inc ip le  would p reva i l  in place  of the D ' A l e m b e r t  pr inciple  where  ro ta t ional  motion 
would play the s ame  ro le  as t r ans la t iona l  mot ion p lays  in the e s t ab l i shmen t  of the D ' A i e m b e r t  pr inciple .  To 
do th i s ,  i t  is  n e c e s s a r y  to r ep l ace  t r ans la t iona l  mot ions  by rota t ional  mot ions  as fa r  as motion of the body is 
concerned ,  and to r ep l ace  points by p lanes  as fa r  as the body i t se l f  is concerned ,  as is done in higher  geo-  
me t r y .  

I t  is obvious that  the new s y s t e m  does not nullify the old. Both s y s t e m s  a re  pa ra l l e l  and we mus t  use  
them in accordance  with the p rob l em  formula ted .  Fo r  our  cons t ruc t ion ,  however ,  it is not the opera t ive  side 
that  is impor tan t  but the pr inc ip le  i tself .  Indeed,  if the pr inc ip le  of duality p e r m i t s  mutual  in terchange of 
t r ans la t iona l  mot ions  with the ro ta t ional  mot ions  and vice  v e r s a ,  this  pr inciple  mus t  be p r e s e r v e d  in s t a t i s t i -  
cal  mot ions  a lso;  i . e . ,  we have the r ight  to a s s ign  p r e f e r e n c e  to t rans la t iona l  mot ions  over  rota t ional  mot ions  
and vice  v e r s a .  Th is  means  that  the s t a t i s t i ca l  quant i t ies  cha rac t e r i z ing  t r ans la t iona l  motion m u s t  somehow 
depend on the s ta t i s t i ca l  quanties  cha rac t e r i z ing  rota t ional  motion and vice  v e r s a .  The i r  independent e x i s -  
tence is a d i r ec t  negat ion of the poss ib i l i ty  of desc r ib ing  a s ta t i s t i ca l  s ta te  in accordance  with the pr inciple  
of duali ty.  

In a t h r ee -d im ens i ona l  p rob l em  it  is n e c e s s a r y  to have th ree  pa i r s  of s ta t i s t ica l  quant i t ies ,  namely ,  
Ulp, Ulr as the f i r s t  pa i r ,  U2p, U2r as  the second p a i r ,  and U3p , U3r as the th i rd  pa i r .  

In accordance  with the pr inc ip le  of duali ty,  the theory  of s ta t i s t i ca l  mot ions  mus t  be const ructed so that  
rota t ional  mot ions  en te r  equivalent ly with t r ans la t iona l  mot ions .  In other  words ,  the descr ip t ion  of a s t a t i s -  
t ica l  s ta te  of a s y s t e m  mus t  be based  e i the r  on rota t ional  mot ions  or  on t rans la t iona l  mot ions .  This  means  
that  the s ta t i s t i ca l  f e a t u r e s  m u s t  be i n t e r c o r r e l a t e d  so that  t rans la t iona l  and rota t ional  motions en te r  equ iva-  
lently. Such a co r re l a t ion  can ex i s t  under  conditions where  the re la t ion  

uiv = f(u/r, uhr); ulr = ~(ujp, uk~). (9) 

occurs .  In ma thema t i ca l  s t a t i s t i c s ,  these  functions a r e  cal led r e g r e s s i o n  l ines.  In the s imples t  case ,  these  
l ines  can be cons idered  s t r a igh t  l ines .  We then have in place  of Eqs.  (9) 

U-'lp ----- a21U2r + aaluar 

u2 p al,Ulr -~- a32u3 r ! [ - (10) 
1 

u3p c/l~ulr -[- amuzr 

For  i so t rop ic  co r re la t ion  we have the identity aij  = aji.  Nothing is changed if the r e su l t s  of the preceding  s e c -  
tion a r e  in te rp re ted  f r o m  the views put forward .  I t  wil l  be seen below that  with such an in te rpre ta t ion  an 
opportunity is  p rovided  for  theore t ica l ly  es tab l i sh ing  a connection between the co r re l a t ion  coefficient  and the 
densi ty of a c o m p r e s s e d  gas or  liquid. 
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A relation between the parameters aij and the correlation coefficient was established by Edzhvors [6]. 
In the case of isotropic correlation, it takes the form 

(Y2 r G 2 

o I r -1- 1 r 

O" 3 r ~ ? ~  % , 
a3t - -  ~1 r + I a, (11} 

G 3 Y ~ ?~ (;a , 

a32 = a z r - 4 - 1  fill 

For this same case, we use the previously established equations and show that 

l+r 
G1 ~ G2~ G3 ~ G. 

(1 - -  r) (1 q- 2r) 

We now rewr i t e  Eqs.  (11) in the f o r m  

a21 ----- a a l  ----- aa~ = f t .  

We then square  Eqs.  (10) and take the i r  ave rage .  We then have 

U2p : a2lU2r9 ,-~ .~_ a31u3rt-~ , 

= 12 l . . . . .  

~--- a l 3 U l r  -IF a 2 3 U 2 r  �9 

I t  is  a s sumed  U-jr = 0 since they a r e  essen t i a l ly  cen t ra l  va lues .  We use  the notation 

= u}, + u}, + 

Using Eqs.  (13) we then obtain 

In addition, we s e t  

u~-- = (a2,~ + a~3 - a 2 ~ u~ - -  (a23u,.~ ~ + .~ u~ .a_ ,,~ .~ 
i 23 /  r --13 9 r  ~ --12--3r;"  

- - - = L ~ - ?  

Then the next  to l a s t  equat ion is  t r a n s f o r m e d  to the following: 

- 2 , ~  2 a~s) .  u~ -- ~-  u; ( %  + '~h + 

I f  the quant i t ies  a~j a r e  r ep laced  by the i r  va lues  e x p r e s s e d  in t e r m s  of the co r re l a t ion  coeff icient ,  we t h e n  
have 

= 2u~n'. 

This  leads  to 

(12) 

(13) 

- -  2u~ 

The produc t  ~ m / 2  (we denote this by rn) can be t r e a t ed  as  the kinetic energy  of t rans la t iona l  motions.  The 
P . ~ . . . . . .  

product  Urm/2 (we denote thzs by Vr) can be ldentffzed with m o l e c u l a r  kinet ic  energy  acquired  by ro ta t ing  around 
an axis located on a moving polhode. 

In this r e g a r d ,  we r eca l l  the following definit ions of t rans la t iona l  and rota t ional  ve loci t ies .  The ins tan-  
taneous angular  ve loc i ty  around an axis  lying on a moving polhode mult ip l ied by the radius  of curva tu re  y ie lds  
the veloci ty  cor responding  to the ro ta t ion  of the body. The instantaneous angular  veloci ty  of a plane f igure 
around a pole lying on a s t a t ionary  polhode mul t ip l ied  by the radius  of cu rva tu re  of the polhode yie lds  the t r a n s -  
la t ional  veloci ty  of the body. 
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However,  the rat io m/d~ has the sense of a density,  which we denote by P0- 

Consider ing what has been said,  we rewri te  Eq. (14) in the fo rm 

V F x p - "  (15) tZ ---- 2T r 

If the molecules move in a force field the potential U of which has a degree of uniformity k, the following rela- 
tlon holds in an unbounded medium for the average kinetic energy of translational motion, 

2 

As the potential of the forces maintaining translational motion, we assume an attractive potential, the degree 
of uniformity of which is generally accepted to be 6. 

If the energy �9 is identified with the energy Tp, Eq. (15) can be rewritten in the form 

_ a 

1 3 a �9 3 d6 n=-~- ~.~, -- 

It  is obvious that the relat ion I ~ d  3 = p will have the significance of a density which agrees  with the density of 
the gas or  liquid. We now rep resen t  the formula for  the definition of n in the following manner:  

P 3a (16) 
n = m 2~, 

The resul tant  express ion  is reduced to a more  interest ing form.  Nothing prevents  us f rom express ing  the 
energy v r through the a t t ract ive potential having selected an appropriate  distance,  which we denote by d 0. In 
this ease ,  the las t  equation is rewri t ten  in the fo rm 

�9 --m- p. 

We then have 

• f  ~___~ P (17) 

The quantity P0 general ly depends on the density of the gas. In f i r s t  approximation,  we can set  P0 = ~P(al + a2P). 
Then,  to a cer tain approximation,  Eq. (17) takes the fo rm 

r - n --- I/:p (A I n u A~o). (18) 
l + r  

Thus ,  the arguments  offered show what physical  state it is neces sa ry  to assume in o rder  to explain the emp i r i -  
cally determined Eq. (18). It is obvious that the constants A l and A 2 depend on the volume occupied by a mole -  
cule if the in termolecular  distance becomes such that the at t ract ive potential force  balances the rotational 
energy  of a molecule around an axis lying on a moving polhode. 

The question a r i ses  as to whether such a conceivable state of the medium exists .  This state is a singular 
state among other possible states.  In nature,  singular states of thermal  motion in mat te r  are  found prec ise ly  
at  the c r i t ica l  point. 

We assume that the state specified above is real ized at the cr i t ical  point. Then the coefficients A t and 
A 2 mus t  be proport ional  to the cor rec ted  specific volume at the cr i t ical  point. But, as experiment  shows, that 
l as t  is proport ional  to the rat io between cr i t ical  t empera ture  and cr i t ical  p res su re .  F rom what has been said 
we have the r ight to assume 

Al =a l  + b, T---c- ; A , :  a2 q- b, Tr 
Pc Pc (19) 

It  is impossible to calculate the constants appearing here ;  it is necessary  to select  them on the basis of an 
analysis  of experimental  data. Fur ther ,  the success  of the theory will lie in the universal i ty  of these con- 
stants;  i .e . ,  they should remain constant for  severa l  different mater ia l s .  

We shall show below that the following empir ica l  formulas  possess  this proper ty :  
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rc 
A I = 0.8096. I0 -z + 0.4481.10 -z 

Pc 

A 2 = 0.9924.10 -6 - -  0,5481.10 -5 Te 
Pc 

Returning to Eq. (7), we rewri te  it in the form 

po _ W ( n ) _ B p .  
R T  

(20) 

(21) 

Here the v i r ia l  for  in termolecular  fo rces  is r epresen ted  by only a single t e rm and the corre la t ion  coefficient 
is independent of t empera ture  according to Eqs. (18) and (20). The tempera tu re  dependence of the c o m p r e s s i -  
bility fac tor ,  according to Eq.(21), will be determined ent irely by the function B(T), which should be found by 
approximation to experimental  data. If the ra t io  Tc /Pc  is known, the function qr is calculated as a function of 
density according to Eqs. (6), (18), and (20), and only the single experimental  constant B remains  in Eq. (21). 

w D e r i v a t i o n  o f  C o r r e l a t i o n  D i s t r i b u t i o n  F u n c t i o n  

f r o m  G i b b s '  D i s t r i b u t i o n  

We assume the molecules  are  of finite size.  Then the motion of each molecule can be divided into t r a n s -  
lational motion of the center  of mass  and rotation around the lat ter .  Consequently, the express ion  for the kine- 
tic energy of a molecule has the form 

m 112 21__ K = ~- (.~2 + + ;2) + (lio~ + 12(~y 2 + Iar (22) 

In statistical mechanics, it is customary to assume that the angular velocities }, ~, and ~ of translational mo- 
tion do not depend on the angular velocities Wx, Wy, and w z of rotational motion. However, this assertion 
contradicts the geometric principle of duality mentioned above. More than that, types of mechanical motions 
exist where this coupling is simply obvious. For example, if a body participates in screw motion along some 
axis, the translational velocity of the body along this axis is expressed through the angular velocity of rota- 
tional motion in the following manner: 

h (23) 

where h is the pitch of the screw which generally can be a function of t ime. Another example occurs  when a 
disk of radius R rol ls  along a plane without slipping. In this case the condition of roll ing without slipping r e -  
duces to the fact  that the path t r ave r sed  by a point along the a rc  of the c i rcumference  is equal to the d isp lace-  
ment  along the plane over which roll ing occurs  and this leads to the following relat ion [7]: 

= Ro~. (24) 

Equations (23) and (24) r ep resen t  par t icu lar  cases  of nonintegrable,  nonholonomic constraints  imposed on a 
mechanical  sys tem and which reduce its degrees  of f reedom. 

If the gas is in equil ibrium motion and the molecules  collide in accordance with the laws for  noncentral  
collision, the molecules  will acquire rotat ional  veloci t ies  in addition to t ranslat ional  velocit ies.  Since the ro t a -  
tional veloci t ies  are  a consequence of the t ranslat ional  veloci t ies  nonholonomic constraints  of the following 
fo rm can occur :  

Now Eq. (22) can be rewri t ten in the fo rm 

1 
K =  

2rn 

--h, ,  ~ --hs, ~ = h ~ .  
~y ~z 

[(1 + ~l)p~ + (l + ~2)p~ + (t + ~)~,~I, (25) 

in which the t ranslat ional  velocity was replaced by the moments  Px = m~, py = mr/, Pz = m~, and the additional 
notation 

11 12 Ia (26) 
r mh~ ' r mh~ ' % - -  mh~ " 
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introduced.  Using the Gibbs fo rmu la ,  we de te rmine  the probabi l i ty  of finding a molecule  in a volume e lement  
of the s ix -d imens iona l  phase space [8] 

E 

d W  ~ A ,e  kr dxdydzdpxdpcdp, .  (27) 

We a s sume  that  the molecule  has no potential  energy.  Then the total  energy E of the molecule  is equal to i ts  
kinet ic  energy  K and a f te r  integrat ion over  the coordinates  of phase  space ,  Eq.(27) can be rewri t ten  as 

/< 

d W  - Ae kr dp~pudp~" 

Now, using Eq. (25), we re tu rn  to the equation for  the probabi l i ty  density 

/ l } 
f ~-Aexp 2mkr [(1 ..'- al)p~ q--(l + a z ) p ~ + ( l - ~ ) p ~ ]  

or  a f t e r  t r ans format ion :  f rom momenta  to ve loc i t i es  we have 

[ = ,4 exp ~ 2 - ~  [( 1 -i- czl) ~2 -t- ( 1 + e2) '1 ~ + (1 + %) ~"1 �9 (28) 

Equation (28) t r a n s f o r m s  into a Maxwellian veloci ty  dis t r ibut ion if a t  = ~2 = ~3 = 0 ,  which is equivalent  to a 
ze ro  value fo r  the molecu la r  m o m e n t s  of iner t ia  I1, I2, and 13 along the pr inc ipa l  iner t ia l  axes .  

Equation (28) ag rees  in f o r m  with Eq.(5). Consequently,  it a lso  r e p r e s e n t s  the canonical  f o r m  of the 
co r r e l a t i on  dis t r ibut ion function (2). In compar ing  Eqs.  (28) and (5), we e x p r e s s  the p a r a m e t e r s  a l ,  ~2, and 
~3 through the co r re la t ion  coeff icient  r in the following manner :  

2r r ~ =  , ~ = ~ 3 =  
I T r  I A - r  

P 
V 

r i  
~, ~,~ 
r 

m 
R 
N 

NOTATION 

is  the p r e s s u r e ;  
is the spec i f ic  volume;  
is the radius  vec to r  for  posi t ion of molecule ;  
a re  the components  of t h e r m a l  veloci ty  vec to r ;  
is the co r r e l a t i on  coefficient;  
is the molecu la r  m a s s ;  

is the un iversa l  gas constant;  
is  Avogad ro ' s  number .  
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