NOTATION

is the longitudinal coordinate;

is the angle between stream axis and horizontal;
is the density;

is the viscosity;

is the shear modulus;

is the relaxation time;

is the surface tension of liquid;

is the stream radius;

is the stream area;

is the perimeter of stream cross section;
is the liquid velocity in stream;
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are the volumetric and mass flow rates;

is the longitudinal tension in stream;

is the solution concentration;

is the shear rate;

is the degree of elongation of element of liquid;
is the acceleration of gravity.
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THEORY OF EQUATION OF STATE FOR REAL GASES
1.

V. A. Bubnov UDC 536,711

An equation of state for real gases is derived by using correlation relations between the compo-
nents of the thermal velocity.

§1, Correlation of Velocities and Multiple Collisions

in Phase Space

The principles of mechanics were extensively used for molecular-kinetic interpretation of the propei'ties
of gases in the works of Professor Clausius at Bonn, He succeeded in setting up the famous equation known as
the virial equation. In modern molecular physics, it is written in the form

- —"K”—E 6(15(r o)

We recall that the product pv is interpreted here as the virial of the external forces acting on a gas enclosed
in a given volume. The quantity K expresses the kinetic energy resulting from motion of the particles in the
gaseous system. The second term on the right side of Eq. {1} expresses the virial for the internal forces.

Two phase spaces are introduced for the derivation of an equation of state from Eq. (1). The firstis a
velocity phase space, the coordinates of which are the three components £, , and ¢ of the thermal velocity vec~
tor. The quantities (9&/0r)ny, (Sb/ar)ny, and (82/5r)nz are taken as the coordinates of the second phase space.

Machine-~Building Institute, Moscow. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol, 34, No, 3,
pp. 519-528, March, 1978, Original article submitted February 8, 1977,

0022-0841/78/3403-0353 $07,50 ©1978 Plenum Publishing Corporation 353



The distribution of points in the first phase space usually obeys the Maxwell law, i.e., the Laplace—
Gauss law generalized fo the three-dimensional case under the condition there are no correlation relations
between the statistical quantities £, , and {. The second phase space involves quantities characterizing the
positions of the molecules and a binary distribution function which is determined from the law of large numbers
is introduced as its characteristic. For the derivation of the equation of state, it is now merely a matter of
performing mathematical calculations depending on some interaction law, These calculations entail great
mathematical difficulty associated with the calculation of the virial coefficients, but from the viewpoint of

comparison between theory and experiment, the results obtained in this way cannot be considered satisfactory
(for example, see [1)).

The statistics of latent elementary phenomena can be constructed in various ways. For example, why is
it customary to assume the absence of correlations between the statistical quantities £, 1, and ¢ in velocity
phase space? This is a more or less probable hypothesis. On the other hand, nonholonomic constraints may
operate within the statistical system which do not permit an arbitrary change in the velocities of atoms or
molecules. These nonholonomic constraints are equivalent to the presence of so-called gyroscopic forces in
a system which may produce correlation between the components of molecular thermal velocity [2].

We previously established a distribution function for the thermal velocities of atoms or molecules where
the velocity phase space lacks spherical symmetry [3]. It has the form

_ 1 Ru g2 R, W, Ry f_
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We assume the standard deviations, oy, 0,, and o3 expressed through a certain quantity o, the significance
of which will be shown later, in the following manner:

0’1=‘// 121 g, ozr—‘/gc. (13;—_"/—?;;(!.

We now write the expression for the distribution function in the form
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We consider isotropic correlation. Then the minors of the correlation determinant have the form
R11=R22=Rm=l—r2; R12=R13=Rm=—r(l——f).
Using this, we rewrite Eq.(2) in the form

f=Aexp{—— !
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where n is defined in the following manner,

r
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It is easy to bring the quadratic form (3) to a canonical form [4]. Then

1
=Adexp|—
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(8.8 + sm® + sséz)] ’ (5)

where s; =1 — 2n, s, =1+n, s3=1+n, Itiseasytoseethats;=s;=s3;=1ifr=0and the distribution func-
tion (5) is converted into a Maxwellian distribution with the latter being a special case.

The constant A in Eq.(5) is determined from the normalization condition and for calculation of the mean
square thermal velocity (€2 = E2 + 9% + %, it is necessary to transform to spherical coordinates; after per-
forming well~known calculations we obtain
- _ 3(l—n)c®

2

- — 3% (n)o2. ©
(1 + m) (1 —2n)
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For our case, the mean kinetic energy of translational molecular motion is

1 z 3
= — 2 m;v? = Nme _ = Nmo®¥ (n).
2 - ¢ 2 2

The quantity ¢ can be related to the temperature through the Boltzmann postulate

Nme? = RT.
Equation (1) now takes the form
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In the above equation, we separate out the compressibility factor

pv
L =)+ Flp, T).

RT (m+Fp, T) (n
The function F(p, T) takes into account the contribution to the compressibility factor from the virial for the
intermolecular forces. We first consider a state of the compressed gases such that the function F(e, T) can
be assumed small. In that case, we rewrite the equation of state in the form

P wn).
RT (n) (8)
To make our derivation more convincing, we carry out the following check. For moderately high pressures,
Hirshfelder recommends the following equation of state:
B(T) b /

P BT g6s (-)2 + 0.2869 (i)3+ 0.1928 (1)4 :
RT v v v v

Here B(T) is the second virial coefficient, and @ and b are the usual Van der Waals constants. This equation
was obtained under the assumption the internal energy of the gas depended linearly on density and the mole-
cules resembled hard, noninteracting spheres at sufficiently high temperatures., This equation has many good

features, Thus, by means of it, the change in the Joule —Thomson coefficient with pressure is described rather
well,

In the Hirshfelder equation, we replace the ratio b/v by a quantity proportional to n; i.e., we set by =
an, and we represent the ratio B(T)/v in the following manner:

B() _ b
v 4]

= Aan
The Hirshfelder equation then takes the form

_;’”F =1+ Aan + 0.625a212 + 0.286%%° + 0.19280tnt.
Now the right side of this equation is some function of the correlation coefficient which we denote by x(n). The
two functions ¥(n) and X(n) can be superimposed on one another. In order to carry out this operation, it is
necessary to calculate the constants A and o of the function x(n) from two points of the function ¥(n), They
turned out to be @ =2.76 and A =—0.264, After this, the two functions were superimposed (Table 1), As is
clear from the table, both functions are in reasonably good approximation.

Since triple and quadruple molecular collisions were considered in the derivation of the Hirshfelder equa~
tion, the matching of the functions x(n) and ¥(n) leads one to think the introduction of correlation distribution
functions is equivalent to these collisions, This is also understandable logically, Correlation is introduced in
statistical entities when their change is constrained by any conditions, The tendency toward separate calcula-
tion of triple, quadruple, etc. collisions of molecules is essentially equivalent to the imposition of certain con-
ditions on change in thermal velocities. The very fact that these collisions are selected implicitly assumes
some constraint on free motion of the molecules. It is therefore not surprising that both functions ¥(n) and
Xx(n) are reasonably good approximations of one another.
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TABLE 1, Comparison of the Functions x(n) and ¥ (n)

n X (n) W (n) ) “ n X (n) ¥ (n)
0,15 1,0239 1,0559 0,30 1,4634 1,3461
0,20 1,1109 1,11 0,35 1,7548 1,6050
0,25 1,2533 1,2000 0,40 2,1429 2,1428

§2, Kinematics of Statistical Motions

The French geometer Charles expounded the geometric principles of duality in detail in [5]. In his opin-
ion, only custom with respect to the views of the ancients and the successes of Varignon and Newton, who re-
placed motion by forces, created a rational mechanics and thereby reinforced the conviction that the theory of
mechanical motions must rest on the primary concept of the point as an element of space. At the same time,
this can lead to a one-sided manifestation of natural phenomena. They made force force the dominant and pri-
mary concept in mechanics and the concept of a pair a derivative concept not equivalent to the concept of a
force. :

However from an analysis of the characteristics of the motion of a free rigid body, it is easy to confirm
that rotational and translational motions enter in completely equivalent fashion in the overall motion of the
body., Therefore, it was not difficult for Charles to show how it was necessary to construct a mechanical sys-
tem in which another principle would prevail in place of the D'Alembert principle where rotational motion
would play the same role as translational motion plays in the establishment of the D'Alembert principle, To
do this, it is necessary to replace translational motions by rotational motions as far as motion of the body is
concerned, and to replace points by planes as far as the body itself is concerned, as is done in higher geo-
metry.

It is obvious that the new system does not nullify the old. Both systems are parallel and we must use
them in accordance with the problem formulated. For our construction, however, it is not the operative side
that is important but the principle itself. Indeed, if the principle of duality permits mutual interchange of
translational motions with the rotational motions and vice versa, this principle must be preserved in statisti-
cal motions also; i.e., we have the right to assign preference to translational motions over rotational motions
and vice versa. This means that the statistical quantities characterizing translational motion must somehow
depend on the statistical quanties characterizing rotational motion and vice versa, Their independent exis-
tence is a direct negation of the possibility of describing a statistical state in accordance with the principle
of duality,

In a three-dimensional problem it is necessary to have three pairs of statistical quantities, namely,
Uyp, Uyr as the first pair, usp, Uyr as the second pair, and ugp, ugr as the third pair.

In accordance with the principle of duality, the theory of statistical motions must be constructed so that
rotational motions enter equivalently with translational motions. In other words, the description of a statis-
tical state of a system must be based either on rotational motions or on translational motions. This means
that the statistical features must be intercorrelated so that translational and rotational motions enter equiva-
lently. Such a correlation can exist under conditions where the relation

Uip = [ Wirs )y Uir = @ (Uips Unp)- )

occurs. In mathematical statistics, these functions are called regression lines., In the simplest case, these
lines can be considered straight lines. We then have in place of Eqs. (9)

Uyp = Qg 1 Qyllar
Uyp = @yl + Qgpllsy [ ' (10)
Usp = Oyglly, + Oyqlly,

For isotropic correlation we have the identity ajj = aj4- Nothing is changed if the results of the preceding sec-
tion are interpreted from the views put forward. It will be seen below that with such an inferpretation an
opportunity is provided for theoretically establishing a connection between the correlation coefficient and the
density of a compressed gas or liquid,
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A relation between the parameters @jj and the correlatmn coefficient was established by Edzhvors [6].

In the case of isotropic correlation, it takes the form
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For this same case, we use the previously established equations and show that
14r
0’1 == 0’2 =
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We now rewrite Egs.(11) in the form

Gy =dy =g = N.
We then square Egs, (10) and take their average., We then have
u iy a’?l 2r + a31u3r 4
u = a},ul, + aszusr ,
2 2
w,=atu? +a 3”
It is assumed uj, = 0since they are essentially central values. We use the notation
— pr)
uj, + u s T ui, .
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Using Eqgs. (13) we then obtain

u; = (a%, + a}, -+ a}y) ” - (agiiu%r +a} 3u2r + amuar)

In addition, we set

u2::;l§:1-1—2 -—_-l_
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Then the next to last equation is transformed to the following:

- 9
u, = 3 ul (a3, + a3 + a3y)-
If the quantities alJ
have

02 — 9 %n2
up_2urn.

P
)
.y
2u?

This leads to

The product alm/2 (we denote this by Tp) can be treated as the kinetic energy of translational motions.

11

(2}

13)

are replaced by their values expressed in terms of the correlation coefficient, we then-

(14

The

product u m/2 (we denote this by 7,) can be identified with molecular kinetic energy acquired by rotating around

an axis located on a moving polhode,

In this regard, we recall the following definitions of translational and rotational velocities.

The instan-

taneous angular velocity around an axis lying on a moving polhode multiplied by the radius of curvature yields
the velocity corresponding to the rotation of the body. The instantaneous angular velocity of a plane figure
around a pole lying on a stationary polhode multiplied by the radius of curvature of the polhode yields the trans-

lational velocity of the hody.
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Considering what has been said, we rewrite Eq. (14) in the form

=) o 15)

If the molecules move in a force field the potential U of which has a degree of uniformity k, the following rela-
tion holds in an unbounded medium for the average kinetic energy of translational motion,

- &
T=—U.
2

As the potential of the forces maintaining translational motion, we assume an attractive potential, the degree
of uniformity of which is generally accepted to be 6,

If the energy 7 is identified with the energy Tp» Eq. (15) can be rewritten in the form

1 3 a - 3 a
=Y T TR E
It is obvious that the relation m/d® = p will have the significance of a density which agrees with the density of
the gas or liquid. We now represent the formula for the definition of n in the following manner:

p %
SavE S (16)

The resultant expression is reduced to a more interesting form. Nothing prevents us from expressing the
energy Tp through the attractive potential having selected an appropriate distance, which we denote by d,. In
this case, the last equation is rewritten in the form

Ve
"=V 7T m P
However, the ratio m/dg has the sense of a density, which we denote by py. We then have

2/ 3 P 17
n_l/?.W 17

The quantity p, generally depends on the density of the gas. In first approximation, we can set py = vo(a; + a;0).
Then, to a certain approximation, Eq. (17) takes the form

r -
—— =n=Vp(A + 4p) 18
T+ V4, b Y (18)
Thus, the arguments offered show what physical state it is necessary to agsume in order to explain the empiri-
cally determined Eq.(18). It is obvious that the constants A; and A, depend on the volume occupied by a mole-
cule if the intermolecular distance becomes such that the attractive potential force balances the rotational
energy of a molecule around an axis lying on a moving polhode.

The question arises as to whether such a conceivable state of the medium exists. This state is a singular
state among other possible states. In nature, singular states of thermal motion in matter are found precisely
at the critical point,

We assume that the state specified above is realized at the critical point, Then the coefficients A and
A, must be proportional to the corrected specific volume at the critical point. But, as experiment shows, that
last is proportional to the ratio between critical temperature and critical pressure. From what has been said
we have the right to agsume

T, T
A=a+b—2; Ay=a,+ b~ (19)
pc c

It is impossible to calculate the constants appearing here; it is necessary to select them on the basis of an
analysis of experimental data. Further, the success of the theory will lie in the universality of these con-
stants; i.e., they should remain constant for several different materials.

We shall show below that the following empirical formulas possess this property:
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A, = 0.8096-1072 4 0.4481.1072 Te

e (20)
A, = 0.9924.1075 —0,5481.1075 —&
pC
Returning to Eq. (7), we rewrite it in the form
P _ w(n)—Bp.
RT () [ 21)

Here the virial for intermolecular forces is represented by only a single term and the correlation coefficient
is independent of temperature according to Egs. (18) and (20). The temperature dependence of the compressi-
bility factor, according to Eq.(21), will be determined entirely by the function B(T), which should be found by
approximation to experimental data, If the ratio T,/p. is known, the function ¥ is calculated as a function of
density according to Egs. (6), (18), and (20), and only the single experimental constant B remains in Eq. (21).

§3. Derivation of Correlation Distribution Function

from Gibbs' Distribution

We assume the molecules are of finite size, Then the motion of each molecule can be divided into trang-
lational motion of the center of mass and rotation around the latter. Consequently, the expression for the kine-
tic energy of a molecule has the form

K=%@+f+m+§mﬁ+M$HMl ‘ 22)

In statistical mechanics, it is customary to assume that the angular velocities &, 7, and ¢ of translational mo-
tion do not depend on the angular velocities wy, wy, and wy of rotational motion. However, this assertion
contradicts the geometric principle of duality mentioned above. More than that, types of mechanical motions
exist where this coupling is simply obvious. For example, if a body participates in screw motion along some
axig, the translational velocity of the body along this axis is expressed through the angular velocity of rota-
tional motion in the following manner:

= g, (23)

2n
where h is the pitch of the screw which generally can be a function of time. Another example occurs when a
disk of radius R rolls along a plane without slipping. In this case the condition of rolling without slipping re-
duces to the fact that the path traversed by a point along the arc of the circumference is equal to the displace~
ment along the plane over which rolling occurs and this leads to the following relation [7]:

= Ro,. 24

Equations (23) and (24) represent particular cases of nonintegrable, nonholonomic constraints imposed on a
mechanical system and which reduce its degrees of freedom.

If the gas is in equilibrium motion and the molecules collide in accordance with the laws for noncentral
collision, the molecules will acquire rotational velocities in addition to translational velocities, Since the rota-
tional velocities are a consequence of the translational velocities nonholonomic constraints of the following
form can occur:

_§_=hl, B & =k,
o, oy o,
Now Eq. (22) can be rewritten in the form
1 2
K=—27[(1 +°¢1)P;+(1+“2)P_,3+(1 + a5) P21 (25)

in which the translational velocity was replaced by the moments py = mé, py = m7y, pz = mf, and the additional
notation

I I I
%= mft‘;’ r % mfztg % 715%? ' (26)




introduced. Using the Gibbs formula, we determine the probability of finding a molecule in a volume element
of the six-dimensional phase space [8]

£
kT

dW ~ Ae *T dxdydzdp.dpdp,- 27)
We assume that the molecule has no potential energy. Then the total energy E of the molecule is equal to its
kinetic energy K and after integration over the coordinates of phase space, Eq.(27) can be rewritten as
_ X
dw — Ae * dp.dp,dp,.
Now, using Eq. (25), we return to the equation for the probability density

1
f=A p[— Pl LR LA +a3)p31}

or after transformation:from momenta to velocities we have
m 1
f=4 exp{——%— (1 + @) B+ (1 + @)+ (1 +a3>c21}. 28)
Equation (28) transforms into a Maxwellian velocity distribution if ¢ = oy = a3 = 0, which is equivalent to a

zero value for the molecular moments of inertia I;, I, and I3 along the principal inertial axes,

Equation (28) agrees in form with Eq.(5). Consequently, it also represents the canonical form of the
correlation distribution function (2), In comparing Eqgs. (28) and (5), we express the parameters «y, &,, and
a; through the correlation coefficient r in the following manner:

a = — it Yy = Oy =
t | I ’ T +r )
NOTATION
p is the pressure;
v is the specific volume;
T is the radius vector for position of molecule;
£, N, ¢ are the components of thermal velocity vector;
r is the correlation coefficient;
m is the molecular mass;
R is the universal gas constant;
N is Avogadro's number.
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